5 research outputs found

    Modeling a Nb\u3csub\u3e3\u3c/sub\u3eSn Cryounit in GPT in UITF

    Get PDF
    Nb₃Sn is a prospective material for future superconducting RF (SRF) accelerator cavities. The material can achieve higher quality factors, higher temperature operation and potentially higher accelerating gradients (E_{acc} 96 MV/m) compared to conventional niobium. In this work, we performed modeling of the Upgraded Injector Test Facility (UITF) at Jefferson Lab utilizing newly constructed Nb₃Sn cavities. We studied the effects of the buncher cavity and varied the gun voltages from 200-500 keV. We have calibrated and optimized the SRF cavity gradients and phases for the Nb₃Sn five-cell cavities energy gains with the framework of General Particle Tracer (GPT). Our calculations show the beam goes cleanly through the unit. There is full energy gain out of the second SRF cavity but not from the first SRF cavity due to non-relativistic phase shifts

    Preliminary Results of Magnetic and Temperature Map System for 3 GHz Superconducting Radio Frequency Cavities

    Get PDF
    Superconducting radio frequency (SRF) cavities are fundamental building blocks of modern particle accelerators. When we cool these cavities at cryogenic temperature ~2 – 4 K, we can get optimum performance by minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the leading sources of residual losses in SRF cavities is trapped magnetic flux. The flux trapping mechanism depends on different surface preparations and cool-down conditions. We have designed, developed, and commissioned a combined magnetic (B) and temperature (T) mapping system using anisotropic magneto-resistance (AMR) sensors and carbon resistors to study the flux trap mechanism in 3 GHz single-cell niobium cavities. In this contribution, we present the preliminary results of the newly commissioned B & T mapping system

    Magnetic Field Mapping of 1.3 GHz Superconducting Radio Frequency Niobium Cavities

    Get PDF
    Niobium is the material of choice to build superconducting radio frequency (SRF) cavities, which are fundamental building blocks of modern particle accelerators. These cavities require a cryogenic cool-down to ~2 - 4 K for optimum performance minimizing RF losses on the inner cavity surface. However, temperature-independent residual losses in SRF cavities cannot be prevented entirely. One of the significant contributor to residual losses is trapped magnetic flux. The flux trapping mechanism depends on different factors, such as surface preparations and cool-down conditions. We have developed a diagnostic magnetic field scanning system (MFSS) using Hall probes and anisotropic magneto-resistance sensors to study the spatial distribution of trapped flux in 1.3 GHz single-cell cavities. The first result from this newly commissioned system revealed that the trapped flux on the cavity surface might redistribute with increasing RF power. The MFSS was also able to capture significant magnetic field enhancement at specific cavity locations after a quench

    CEBAF Injector Model for K\u3csub\u3eL\u3c/sub\u3e Beam Conditions

    Get PDF
    The Jefferson Lab KL experiment will run at the Continuous Electron Beam Accelerator Facility with a much lower bunch repetition rate (7.80 or 15.59 MHz) than nominally used (249.5 or 499 MHz). While the proposed average current of 2.5 - 5.0 µA is relatively low compared to the maximum CEBAF current of approximately 180 µA, the corresponding bunch charge is atypically high for CEBAF injector operation. In this work, we investigated the evolution and transmission of low-rep-rate, high-bunch-charge (0.32 to 0.64 pC) beams through the CEBAF injector. Using the commercial software General Particle Tracer, we have simulated and analyzed the beam characteristics for both values of bunch charge. We performed these simulations with the existing injector using a 130 kV gun voltage. We have calculated and measured the transmission as a function of the photocathode laser spot size and pulse length. We report on the findings of these simulations and optimum parameters for operating the experiment

    Cooling Performance in a Dual Energy Storage Ring Cooler

    Get PDF
    The longitudinal and transverse emittance growth in hadron beams due to intra-beam scattering (IBS) and other heating sources deteriorate the luminosity in a collider. Hence, a strong hadron beam cooling is required to reduce and preserve the emittance. The cooling of high energy hadron beam is challenging. We propose a dual energy storage ring-based electron cooler that uses an electron beam to extract heat away from hadron beam in the cooler ring while the electron beam is cooled by synchrotron radiation damping in the high energy damping ring. In this paper, we present a design of a dual energy storage ring-based electron cooler. Finally, the cooling performance is simulated using Jefferson Lab Simulation Package for Electron Cooling (JSPEC) for proton beams at the top energy of 275 GeV for Electron-Ion Collider
    corecore